Mechanistic and Bifurcation Analysis of Anode Potential Oscillations in Pemfcs with CO in Anode Feed

نویسندگان

  • J. X. Zhang
  • Joseph D. Fehribach
  • Ravindra Datta
  • Jingxin Zhang
چکیده

A detailed mathematical analysis is performed to understand the anode potential oscillations observed experimentally in a proton exchange membrane fuel cell ~PEMFC! with H2 /CO feed ~Ref. 9!. Temperature and anode flow rate are found to be key bifurcation parameters. The time dependence of all the key surface species must be accounted for in order for the model to predict the oscillatory behavior, while the time dependence of CO concentration in the anode chamber need not necessarily be considered. The bifurcation diagram of CO electro-oxidation rate constant agrees very well with the effect of temperature on the oscillation pattern. The oscillator model is classified as a hidden negative differential resistance oscillator based on the dynamical response of the anodic current and surface species to a dynamic potential scan. A linear stability analysis indicates that the bifurcation experienced is a supercritical Hopf bifurcation. © 2004 The Electrochemical Society. @DOI: 10.1149/1.1688795# All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of CO in the reformatted fuel on the performance of Polymer Electrolyte Membrane (PEM) fuel cell

There are several obstacles to the commercialization of PEM fuel cells.  One of the reasons is that the presence of carbon monoxide (CO) in the reformatted fuel, even at a very small scale, decreases the fuel cell performance. The aim of this paper is to investigate the effect of CO in reformatted fuel on PEM fuel cell performance. For this purpose, a steady state, one-dimensional and non-isoth...

متن کامل

Draft: Modeling and Experiments of Voltage Transients of Pem Fuel Cells with the Dead-ended Anode

The operation of PEM fuel cells (PEMFC) with dead-ended anode (DEA) leads to severe voltage transients due to accumulation of nitrogen, water vapor and liquid water in the anode channels and the gas diffusion layer (GDL). Accumulation of nitrogen causes a large voltage transient with a characteristic profile whereas the amount of water vapor in the anode is limited by the saturation pressure, a...

متن کامل

Experimental Study on a 1000W Dead-End H2/O2 PEM Fuel Cell Stack with Cascade Type for Improving Fuel Utilization

Proton exchange membrane fuel cells (PEMFCs) with a dead-ended anode and cathode can obtain high hydrogen and oxygen utilization by a comparatively simple system. Nevertheless, the accumulation of the water in the anode and cathode channels might cause a local fuel starvation degrading the performance and durability of PEMFCs. In this study, a brand new design for a polymer electrolyte membrane...

متن کامل

Spontaneous oscillations of cell voltage, power density, and anode exit CO concentration in a PEM fuel cell.

The spontaneous oscillations of the cell voltage and output power density of a PEMFC (with PtRu/C anode) using CO-containing H(2) streams as anodic fuels have been observed during galvanostatic operating. It is ascribed to the dynamic coupling of the CO adsorption (poisoning) and the electrochemical CO oxidation (reactivating) processes in the anode chamber of the single PEMFC. Accompanying the...

متن کامل

CO-Tolerant Pt–BeO as a Novel Anode Electrocatalyst in Proton Exchange Membrane Fuel Cells

Commercialization of proton exchange membrane fuel cells (PEMFCs) requires less expensive catalysts and higher operating voltage. Substantial anodic overvoltage with the usage of reformed hydrogen fuel can be minimized by using CO-tolerant anode catalysts. Carbon-supported Pt–BeO is manufactured so that Pt particles with an average diameter of 4 nm are distributed on a carbon support. XPS analy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004